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Petrophysics-driven Well Log Quality Control Using ML
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BUSINESS PROBLEM
Petrophysicists rely on well log data to derive 
valuable information about reservoirs
• Well log data is not always optimal due to 

• Poor borehole conditions, 
• Acquisition errors, and 
• Tool failures

• Accuracy of log interpretation depends on 
time spent on data quality control (QC) and 
conditioning

• Reducing time on data QC enables 
petrophysicists to proceed more quickly to 
log interpretation

SOLUTION
Our team developed and 
implemented a tool that 
integrates insights from 
petrophysics with data 
science techniques, 
significantly reducing the 
amount of time dedicated to 
log QC and editing.
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Advantages
Addresses issues with log data in advance
Reproducible results, if the workflow is documented

Disadvantages
Very manual and time consuming process
User must repeat the same process for each zone, 
each well and each curve

Log QC Manual Process

Workflow performed 
by the end user

Raw log QC 
in profile

QC in cross-
plot space

Generate 
bad/good 
data flags

Generate a 
synthetic 
log with a 
regression 
technique

Null bad 
data  
and 

ignore

Splice in 
synthetic 
data and 
original 

good data

Send curve, 
or curve 

segment to
“Final 

Working Set”

Repeat process on 
additional curves, 
to cover all wells 

and zones required
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Advantages
Automated bad hole detection, flagging and bad hole 
flag buffer can be applied to multiple curves/wells
Can execute multiple regressions simultaneously and 
ensemble the best results from all the models

Disadvantages
Each well is reconstructed independently
§ Currently working on a multi-well solution

Log QC Automated Process (Single Well)

Load all the 
data for QC

Detect 
bad data 

and create 
bad hole 

flags
Ensemble curve 
predictions and 

merge with 
original good 

data

Send to
“Final 

Working 
Set”

Input 
Parameters

ü Cut-offs
ü Select zones
ü Regression 

model per 
zone

Run all of 
the selected 
regression 

models

Perform 
bad hole 

flag buffer 
update

ü MLR
ü AdaBoost
ü GBM
ü Random 

Forest

Iterate 
over all 
curves 

and wells

Review 
results

Workflow 
performed 
by the user

Automated 
workflow
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Algorithm Selection

v AdaBoost
v Random Forest
v Gradient Boost Machine (GBM)
v Multilinear Regression (MLR)

Added MLR as a simple, computationally 
less intensive benchmark to compare 
results against

ü Random Forest
ü Bayesian Ridge
ü NN Regression
ü AdaBoost
ü SVM

ü Lasso
ü Gradient Boost 

Machine (GBM)
ü XG Boost
ü Light GBM

1

2
3

Explored:

Source: © 2017 Dataiku, Inc.   www.dataiku.com

Selected:

http://www.dataiku.com/
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Random Forest (or decision forest) 
is an ensemble learning method 
based on averaging decisions 
across multiple decision trees

Alone, a single decision tree is 
prone to overfitting

Random forests generate many 
decision trees, and each tree is 
trained on a random subset of the 
data in a process known as 
bootstrap aggregating, or ‘bagging’

While each individual tree is likely 
to overfit the training data that it 
has been given, the average 
across all of the trees is expected 
to correct this tendency to overfit
Source: Brieman 2001; Hastie, Tibshirani, and Friedman 2009

Random Forest

Example:
Predict whether someone likes computer games

Single Tree Model
• Classify the subjects into different 

leaves, and assign them the score 
on the corresponding leaf

• Usually, a single tree is not strong 
enough to be used in practice

• What is actually used is the tree 
ensemble model, which sums the 
prediction of multiple trees together

Ensemble Random Forest Model
• This is an ensemble of two trees:

1. Prediction score based on age
2. Prediction score based on daily 

computer use
• Prediction scores of each individual 

tree are added to get the final score
• The two trees try to complement 

each other

Source: XGBoost, http://xgboost.readthedocs.io/en/latest/model.html

http://xgboost.readthedocs.io/en/latest/model.html
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Includes Gradient Boosting (GBM)
and AdaBoost

Decision trees, while prone to 
overfitting, are essential building 
blocks to many machine learning 
algorithms

While the Random Forest algorithm 
uses a ‘bagging’ approach to train 
many trees on random subsets of the 
data, ‘boosting’ algorithms take a more 
direct approach when sub-setting data 
and training trees

To minimize prediction error, a 
boosting algorithm generates a series 
of weak learners –decision trees that 
perform at least slightly better than 
random chance– and combines them 
to generate a strong learner
Source: Drucker, 1997

Weak learners are trained iteratively, so that 
the goal for each learner is to predict data points 
that the previous tree had difficulty predicting

Each subsequent learner ‘boosts’ the accuracy 
of the previous learners

Boosting Algorithms

Source: Introduction to Boosted Trees, https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/

Iterative Process of Boosting Algorithms

https://blog.bigml.com/2017/03/14/introduction-to-boosted-trees/
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Sample weights –the probabilities used to determine 
which observations from the training data are 
sampled– are updated with each iteration
The prediction returned for any set of observations is 
the weighted median prediction across all of the 
decision trees

Medians are weighted by the confidence each decision tree has 
in the accuracy of its prediction

Source: Drucker, 1997

Each consecutive decision tree is preferentially 
trained on data that was difficult for previous trees to 
accurately predict
Data subsets are generated by first assigning each 
observation a probability of being sampled

This probability is determined by how difficult it is for a decision 
tree to predict the observation, so that more difficult 
observations have higher probabilities of being sampled
Decision trees are intentionally trained on points that are 
difficult to predict

AdaBoost

• Build first bag of 
data selecting 
randomly from 
training data

• Train the model
• Take all training 

data and use it to 
test the model

• Some points are 
not well predicted 
(error)

• Iterate through this process for 
the total number of bags needed

Train first model
• Build next bag (random selection)
• Each instance weighted 

according to error from 1st model
• Points with significant error from 

1st model are more likely to get 
picked for this bag

• Train the next model
• Test the system using training 

data on both model instances
• Combine the outputs
• Measure error across all the data

Train next model Iterate through n number of bags

Source: Udacity course "Machine Learning for Trading", https://www.youtube.com/watch?time_continue=52&v=GM3CDQfQ4sw

https://www.youtube.com/watch?time_continue=52&v=GM3CDQfQ4sw
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Trains first tree on the observed data, and 
trains each remaining tree on the residual 
error between the first tree’s predicted 
values and the observations in the training 
data

Instead of creating multiple decision trees and 
training each tree on the observed data (AdaBoost)

New trees are parameterized to minimize 
the residual error using gradient descent

Builds a hierarchical model where each 
subsequent tree aims to decrease the 
residual prediction error

Instead of building a suite of trees that are able to 
make accurate predictions in concert (AdaBoost)

Since each tree is part of this hierarchical 
model the prediction returned is simply a 
sum of predictions across all trees

Instead of a weighted ‘voting’ system (AdaBoost) 

Source: Friedman, 2001

Gradient Boosting (GBM)

Continuing the first example:
Predict whether someone likes computer games

Calculate Structure Score
• Define an Objective 

Function (Obj)
• Push statistics gi and hi to 

the leaves they belong to
• Sum statistics together
• Use Obj to calculate how 

good the tree is
• This score is an impurity 

measure and takes into 
account model complexity

Learn Tree Structure
• Split a leaf into two leaves 

and the score is given by 
the Gain formula

• If the gain is smaller than γ
it would be best not to add 
that branch (tree-based 
model pruning technique)

• Place all the instances in 
sorted order• Left to right scan is sufficient to calculate the structure score 

of all possible split solutions and find the best split efficiently
Source: XGBoost, http://xgboost.readthedocs.io/en/latest/model.html

http://xgboost.readthedocs.io/en/latest/model.html
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NPHIL RHOB DTC PE

AdaBoost 1.0 ± 3.13E-04 1.0 ± 3.01E-04 1.0 ± 2.12E-02 1.0 ± 3.40E-03

Gradient 
Boosting

1.0 ± 4.16E-04 1.0 ± 4.57E-04 1.0 ± 5.18E-02 1.0 ± 4.43E-03

Random 
Forest

1.0 ± 3.82E-04 1.0 ± 4.65E-04 1.0 ± 2.57E-02 1.0 ± 3.06E-03

Hyperparameter Tuning and Results

Graphs show error (RMSE) 
vs processing time 
(milliseconds) for each 
model/curve combination 
using different 
hyperparameter settings

Outlined circles highlight 
error/processing time for the 
default hyperparameter 
settings

Random forest typically 
achieves the lowest error in 
the fastest processing time

RHOB

DTC

PE

NPHIL

AdaBoost
GBM
Random Forest

Relative RMSE

NPHIL RHOB DTC PE

AdaBoost 0.936 ± 3.66E-04 0.896 ± 4.26E-04 0.918 ± 3.36E-02 0.878 ± 2.85E-03

Gradient 
Boosting

0.803 ± 2.90E-04 0.776 ± 4.49E-04 0.730 ± 2.58E-02 0.843 ± 3.28E-03

Random 
Forest

1.005 ± 3.62E-04 0.998 ± 5.04E-04 0.995 ± 3.29E-02 1.000 ± 4.02E-03

Default Settings Minimized Error
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Original curve value is higher
than Ensemble predicted value 

Single well reconstruction, 
with multiple curves

RHOB
(G/C3)

NPHI
(dec)

DTC
(US/F)

PE
(B/E)

Ensemble

Merged

Bad Hole Flag

Original Curve

• Original Curve: As is, before reconstruction
• Ensemble: Curve predictions (calculated by one or multiple methods: 

MLR, ADA, GBM, RF), and assembled into a single curve
• Merged: Merged ensemble and original curves, where ensemble curve 

predictions replace bad hole sections, and good/valid original curve 
data remains in place.

Bad Hole Flag
due to cut-off

Bad Hole Flag due to 
other criteria for RHOB

Bad Hole Flag 
cut-off value

Original Curve

Ensemble Curve:
May not line up exactly with the 
Original Curve where data is good

Merged Curve:
Merged Ensemble and Original 
Curves, keeping good data where 
available

Original curve value is lower
than Ensemble predicted value 

RHOB2 3
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Approach
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MULTI-WELL IMPLEMENTATION
The tool operates on multiple wells simultaneously, training models from partial good data and nearest 
neighbors’ normalized data to predict values at bad hole flag areas across all of the wells in the selection

If BHF > 
75% or 

some curves 
missing

Train models 
from partial good 
data and nearest 

neighbors’ 
normalized data

Send 
reconstructed 

well to    
Final 

Working Set

Reconstruct 
logs where 
BHF >75% 

Splice and merge 
reconstructed 

and partial 
(original) good 

data

Detect and 
flag bad 

holes (BHF) 
per zone

Single Well Reconstruction

Find nearest 
neighbors with 

required log 
and  same 

resistivity type

No

Yes

Single Well Solution
Multi-Well Solution
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Approach
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LOG QC MULTI-WELL IN ACTION

ü Uses single well solution when 
possible (defaults to multi-well 
only when necessary)

ü Larger dataset to use for 
reconstruction

ü Create synthetic data from 
neighbor wells

A D VA N TA G E S

Ø Can be slow
Ø Reconstruction is entirely 

dependent on quality and 
distance of offset wells 

Ø Requires basin-wide, expert-
derived cutoffs

D I S A D VA N TA G E S

GR
Caliper RDEEP

DTC
RHOB NPHIL

DTC
PEMissing Curves

RHOB
NPHIL

PE

Reconstructed Reconstructed Original
DTC

Reconstructed

Final 
Working Set

Reconstructed

RHOB
NPHIL

DTC
PE

Bad hole flag
Caused by entire curves 
missing (RHOB, NPHIL, 
PE) or missing segments 
of the curve (DTC)

Multi-well Flag
Sections that were 
reconstructed by multi-
well using partial raw data 
from this well (GR, 
RDEEP, DTC) and 
available good data from 
neighboring wells

No Correction Flag
Sections that cannot be 
reconstructed by multi-
well due to insufficient 
data (RDEEP curve 
missing at top)

Legend



A D V A N C E D  A N A L Y T I C S  &  E M E R G I N G  T E C H N O L O G I E S

SCALINGVALIDATION

Validation and scaling
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ü Conducted cross-validation (90/10)
ü 300 wells from Uinta Basin Green River
ü 5,800 well from Delaware Basin

Ø Ran on ~8000 logs from Delaware Basin
Ø Successfully corrected ~7900 log
Ø Executed on GCP
Ø Took 24 hours

Curve # of 
Wells

% Mean 
Error*

RHOB 92 5.3

NPHIL 78 9.8

DTC 64 6.8

PE 6 8.2

*Absolute difference relative to log range

Curve # of 
Wells

% Mean 
Error*

RHOB 491 3.4

NPHIL 291 7.5

DTC 484 4.4

PE 275 6.1
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Addressing Conventional Log Data QC Challenges
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Time Consuming
• Bad hole detection is time consuming
• Bad hole data must be identified for multiple curves 

across multiple zones

Conventional Log Data QC Challenges

Time Saving
• The tool predicts values at bad hole flag areas

Our Solution

Efficient Reconstruction
• The tool performs well QC and reconstruction 

efficiently and accurately

Insufficient Information
• Some logs do not contain sufficient information

Machine-Assisted Approach
• The tool allows users to QC, correct, and 

reconstruct large volumes of well logs

Manual Approach
• Some curves have been digitized from old paper 

logs and require extensive QC and manual editing

Increasing Data Density
• Expand amount of data that is being processed for 

petrophysical interpretation
• Increase amount of available and interpretable data 

by an order of magnitude

Inadequate Data Usage
• Filtering out too much data to only go with 

highest quality logs
• Making interpretations with poor quality data


