

Deployment of a Cloud-Based Deep Learning Model for Well Log Correlation at Scale

Seth Brazell

ANADARKO PETROLEUM CORPORATION

Generating Robust Stratigraphic Frameworks

Total Wells	Total Tops	Total
Correlated	Interpreted & QC'd	Time
9,000+	30,000+	20 Days

Scalable Solutions to Reduce Subsurface Uncertainty

How do we efficiently harness <u>all available data</u> to generate robust subsurface models?

- Interpreter-driven, machine-assisted solution for high-density datasets
- Propagates defined markers w/ advanced deep learning algorithm & standard correlation techniques
- Objective, repeatable, scalable
- Actively deployed in exploration and development assets

Data from 100,000s Vertical Wells

Existing Approaches to Well Log Correlation

- Well log auto-correlation attempted since 1970's
- Resurgence in interest
 - Improved computing
 - Onshore unconventional plays with 1000's – 10,000's of wells
- Major limitations to existing approaches
 - Computationally too intensive
 - Restricted to a defined cross-section
 - Drift with distance
 - Get 'lost' at faults/facies changes
- Existing approaches are too rigid...

Leveraging Artificial Intelligence

• Machine Learning: algorithms that perform a specific task without explicit instructions

Next-Gen Correlation Tool

Universal Deep CNN Pattern Recognition Model

3D Search & Correlation Tool

Advanced Methology

Propagation Logic

- Tops & comparison distances defined by interpreter
- Incorporates standard correlation rules
- Tops do not cross
- Adheres to structure and isochore statistics
- Minimizes false positives to reduce time spent revewing

Case Study: STACK Play, Anadarko Basin

20 Manually Correlated "Seed Wells"

20 Wells Interpreted. 3.6% Data Coverage. 30 minutes

Interpreter-Driven Workflow

Stratigraphic Framework Evolution

20 Wells Correlated 4% Dataset Coverage Time 30 Minutes

457 Wells Correlated 84% Dataset Coverage Time 9.5 Minutes

510 Wells Correlated 94% Dataset Coverage Time 1.7 Minutes

Machine Learning Results: 97% Accuracy

Manually Correlated Meramec Structure

Machine Assisted Meramec Structure

Enabling Interpreters to Focus on Complexity

Case Study: Summary

Top of Meramec Structural Map

Uncorrelated Well

Correlated Well

Correlation Tool Seed Wells Total Meramec Tops: **20** % Dataset Correlated: **3.6**%

Correlation Tool Iterations: 1 Total Meramec Tops: **457** % Dataset Correlated: **84.0%** Computation Time: **9.45 mins**

Correlation Tool Iterations: 2 Total Meramec Tops: **509** % Dataset Correlated: **93.6%** Computation Time: **1.7 mins**

- Deployed a novel tool for well log correlation
 - Pattern recognition using deep neural network
 - 3D search window & traditional correlation logic
 - Incorporated SME insights
- Iterative approach yields robust & accurate correlations
 - 2 tool iterations
 - 4% to 94% dataset coverage
 - 11 minutes compute time

Leveraging AI to Enhance Reservoir Characterization

Acknowledgments: Michael Ashby, Alex Bayeh, Marc Countiss, Drew Derenthal, Matt Gatewood, Dawn Hayes, Adam Lee, Christian Noll, Didi Ooi, Chris Savage, Preston Wahl. Thanks to Anadarko Petroleum for permission to share this material.

Thank You