Liquid Surging in Riser – A Challenge to Our Understanding and Technology Gjøa Field, Norway

Presenters Arild Sunde 1 Boon Li Tay *

Co-authors Zheng Gang Xu * Chris Lawrence *

- Gjøa field and production system
- Gjøa online flow assurance system (FAS)
- Liquid surging in Gjøa oil production line
- Observations, finding and verification
- Value of the finding

Gjøa Field and Production System

Gjøa PL153

Ownership

Petoro AS (30%) Neptune Energy Norge AS (30%) * Wintershall Norge AS (20%) OKEA ASA (12%) DEA Norge AS (8%)

Remaining Reserves

NEPTUNE ENERGY Oil (1.15 mill. Sm³ o.e) Gas (10.43 mill. Sm³ o.e) NGL (4.465 mill. Sm³ o.e) Condensate (0 mill. Sm³ o.e)

Gjøa Field and Production System

Gjøa Field

Facts

- Location Blocks
- Area
- Water depth 360 m

History

1989 2007

2010

- 50 km NE Troll
- 68 km SW Florø
- 35/9 and 36/7
- 135.651 km²

Discovered

PDO approved

Production start-up

Gjøa Field and Production System

Gjøa Production System: The Development and Future Plan

Development

- Development
 - Platform type

Producers

Export

capacity

Future tie-in

Power supply

- Joint development with Vega (SS tie-back)
- Semi-sub
- 3 x 4-slot SS template
- 1 x 1-slot SS template
- 7 oil
 - 4 gas
 - Mongstad
 - 18 MSm³/d gas
 - 87000 bbl/d oil
- Export terminal St. Fergus (gas)
 - Mongstad (oil)
 - Duva
 - Nova

Bode

Liquid Surging in Gjøa Oil Flowline

Fluctuating P-risertop BUT Stable Well Rates

Gjøa FAS Observations

Water-discharge Following Each P-risertop Increase

Gjøa FAS Observation

Water-cut of 0.55 - 0.58

ENERGY

- A typical range of emulsion (phase) inversion point
- Liquid viscosity can be significantly higher
- Emulsion viscosity and (phase) inversion point of Gjøa fluid are not known

The Finding

Physical Understanding

- Unsteady flow accompanied by intermittent back flow
- Oil and water slip effect in riser
- Water droplets move slower than oil

OLGA Modelling and Calibration

- Flow regime definition
- Water distribution in oil, C
- Shall be applicable for different operating conditions

Verification

Field Data

OLGA Calibrated Model

- Good agreement of surge pattern and cycle
- Fair agreement of P-risertop surge magnitude

Verification

ENERGY

Calibrated model is applicable for 2015 (stable) and 2017 (surging) operating conditions

Value of The Finding

- Physical understanding and verification of the observed field phenomenon
- Improvement to simulator
- A calibrated and reliable simulation model for field operations, optimization and development planning
- Identified potential causes and mitigations for the surge behaviour

Acknowledgement

Neptune Energy Team

- Anne Sofie Olsen
- Mailin Seldal
- Neal Hewitt
- Niklas Olsen
- Torunn Haugvaldstad

Schlumberger Team

- Christian Trudvang
- Gustav Kjoerrefjord
- John Sundt
- Jon Reino Heum
- Kersti Ekeland Bjurstroem
- Morten Oeverland Espeland
- Nicolas Valaye
- Steffen Andersen-Holthe
- Tor Haugset

