



# Pioneering <u>DrillPlan</u> Adoption in Latin America for Well Construction Planning in Large Oil Field in Peru

Manuel Pablo Zúñiga-Pflūcker

PetroTal Corp, President and CEO

September 18, 2019

# AGENDA

- O PetroTal's Mission Unlocking and Creating Value
- D Bretaña Field Overview
- Well Design Challenges
- O DrillPlan Workflows and Added Value
- Our Digital Journey
- O Results and Conclusions



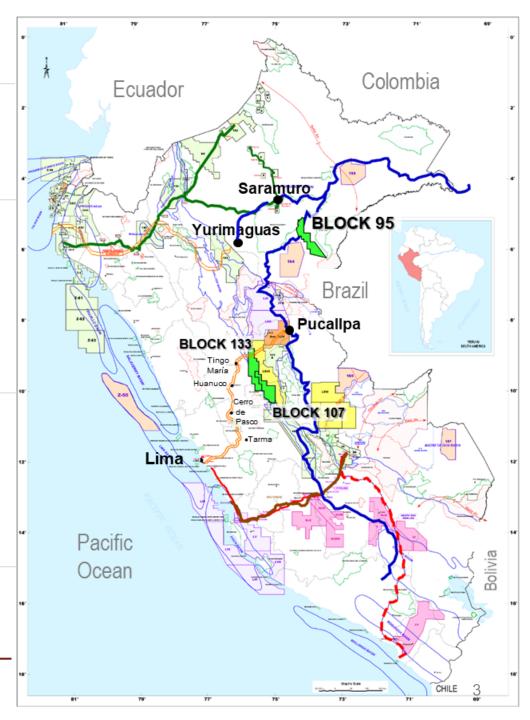
### **UNLOCKING AND CREATING VALUE**

Company Overview

- London AIM and TSX-V listed Peruvian oil company
- Strong balance sheet with no debt, crude prices off Brent, favourable fiscal regime

Significant Progress to Date

- Achieved first production at Bretaña oil field in June 2018, under budget and ahead of schedule
- Currently producing ~5,000 BOPD
- Low cost with target plateau of >10,000 BOPD
- Currently drilling BN-4H (horizontal) well


Substantial
Upside Potential

- Block 95 Bretaña Field with 330 MMBO of OOIP
- Potential to increase 2P recovery factor to 24%
- Block 107 five leads and prospects that have an unrisked high estimate of prospective resources of 4.6 billion barrels of oil

Management Experience

Management and technical team with in-depth expertise and proven track record in Peru





# **BRETAÑA DEVELOPMENT PLAN**

- O Bretaña is a 10,000-acre oil field with 330 MMBO of 2P OOIP
- O 2P reserves of ~40 MMBO assumes a 12% Recovery Factor
- O The highly permeable Vivian oil reservoir is supported by a strong aquifer
- O To maximize oil recoveries, we plan to develop the field with:
  - horizontal oil wells completed with ESPs capable of producing 10,000 bfpd each
  - 20 horizontal oil wells should then produce 200,000 BFPD
  - hence, at a 10% oil cut, Bretaña should produce
     ~20,000 BOPD

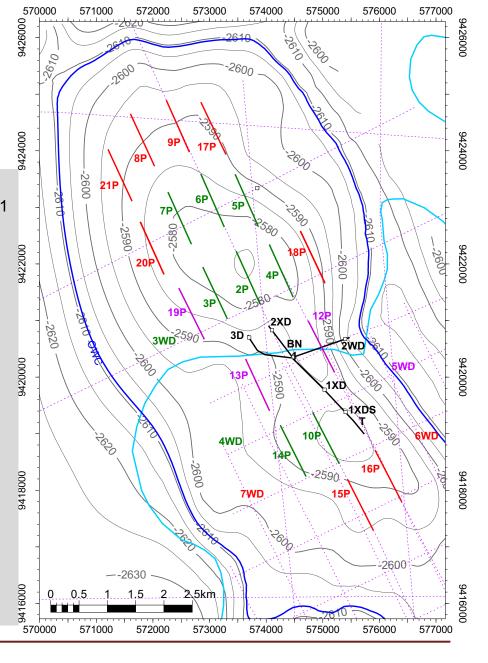
### **EXISITING**:

- 1XDST, 2XD, 3D, BN1
- 2WD

### PROVED:

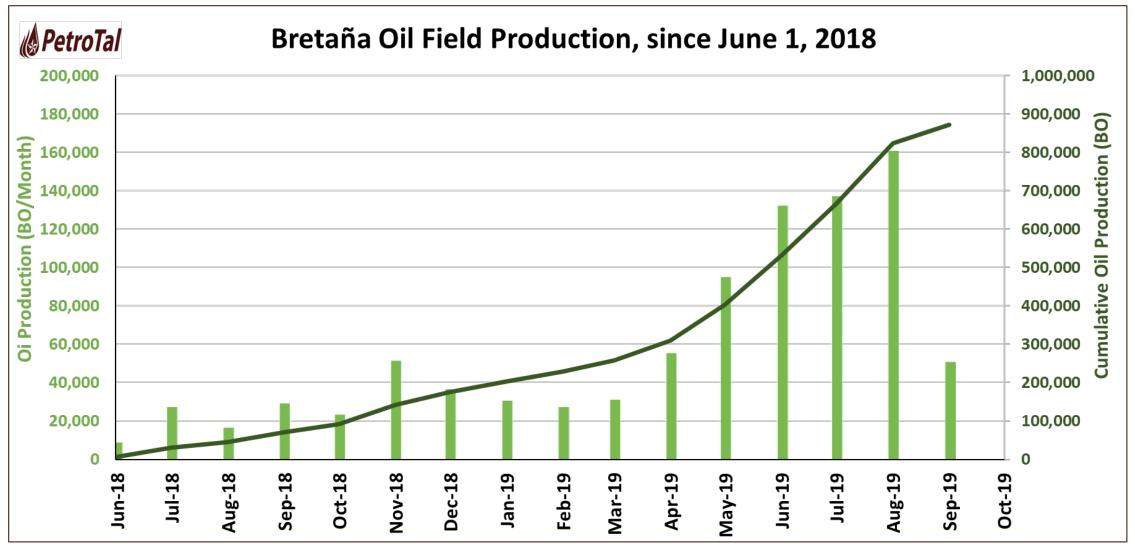
- 8 NEW HORIZ. PRODUCERS
- 2 NEW WD

### **PROBABLE**:


- 3 NEW HORIZ.
   PRODUCERS
- 1 NEW WD

### POSSIBLE

- 8 NEW HORIZ.
   PRODUCERS
- 2 NEW WD


### **3P TOTAL**

- 23 PRODUCERS
- 6 WD





# **GROWING PRODUCTION FASTER WITH NEW HORIZONTAL WELLS**



Data as of September 11, 2019



# COMMITTED TO DEVELOPING THE COMMUNITIES WE SERVE

### CSR Team Engaged with Local Communities

- In Block 95 at Bretaña with 2,000 inhabitants, as well as the 18 communities of the Puinahua District
- In Block 107 with the indigenous Ashaninka and Yanesha ethnic groups, as well as foreign settlers



# Rebuilding Identity of Indigenous Communities

- · Promoting processes to rebuild their identity
- Strengthening indigenous organizations
- Working with a network of NGOs, producers, and local and central government organizations



### Investments in Sensitive Areas

- · Pacaya-Samiria National Reserve
- · San Matías-San Carlos Forest Reserve
- Oxampampa-Ashaninka-Yanesha Biosphere Reserve



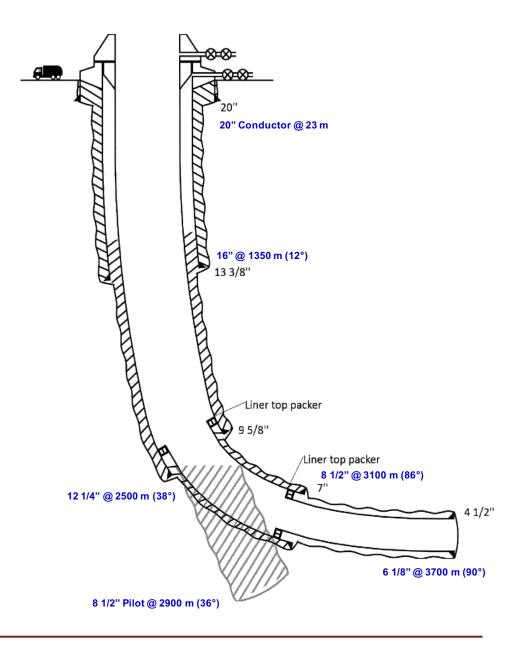
### **Our Strategy**

- Sustainability of the projects based on strategic relationships with the local population and NGOs
- Being active members of the committees that manage the reserved or protected areas
- Having a team with experience working in sensitive areas while caring for the environment
- To be recognized as a conscious user of the land that is committed to and respected for contributing to local development.

Four Pillars of CSR: Commitment to Employees, Communities, Environment, and Ethics

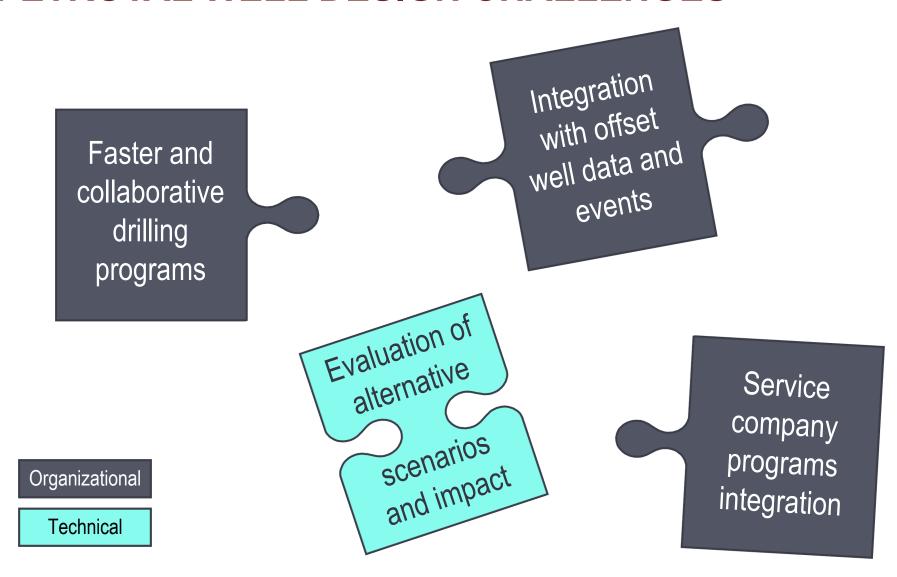


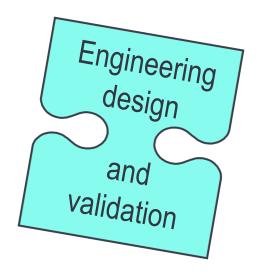
# BRETAÑA OILFIELD LOCATED IN THE MARAÑÓN BASIN OF PERU




Rig drilling under the Puinahua Channel below the Pacaya-Samiria National Reserve




# **DRILLING CAMPAIGN WELL PROFILES**


- 4-section horizontal wells (~10)
  - With and w/o pilot hole
  - Completed with 4-1/2" Liner+Screen+AICD
  - Targeting Vivian sand reservoir
- Production driven by ESP
- 2 deviated Water Disposal wells





### PETROTAL WELL DESIGN CHALLENGES

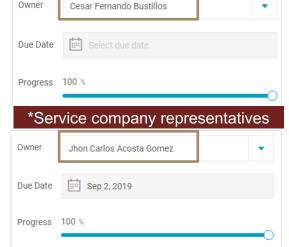






# INTEGRATION AND MANAGEMENT OF DRILLING PROGRAM

- Assignment of owners and deadlines
- Place holders for service company programs
- Inputs available for all the team


# Liner Hanger System Programa de Corrida de Liner PRE JOB POZO: BRETAÑA NORTE 95 4H /TALADRO: PETREX-12 Casing 9-5/8"- 47 ppf x 7" 29 ppf Buttress

### Defined Task





# Responsible



### Deliverable

| Task type  | Custom Liner Hanger Program                              |      |  |  |
|------------|----------------------------------------------------------|------|--|--|
| Comment    | Espacio para carga del programa de colgador para liner d | e 7" |  |  |
| Report tag | CUSTOM_LINER_HANGER_PROGRAM                              |      |  |  |
| File       | TIW programa prelimianar para Corrida de Liner 7°, pdf   |      |  |  |
|            |                                                          |      |  |  |

| Mud Weight Window v1 | PLAN |
|----------------------|------|
| 15:50, Jul 16 2019   |      |
| SHARED               |      |



PetroTal

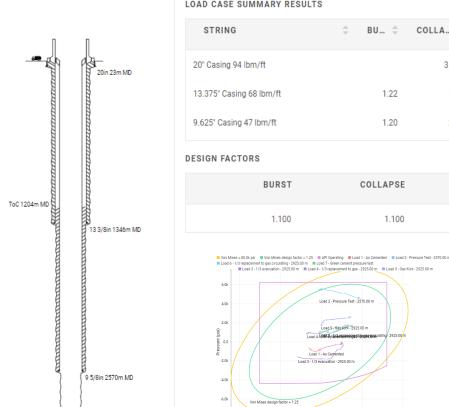
Service company

programs integration

### **COLLABORATIVE PROGRAMS**

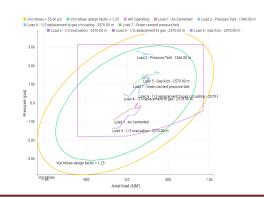
Faster and collaborative drilling programs

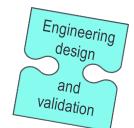
- DrillPlan allows creation of standard deliverables
- Inputs of different users will feed the program


### TYPE DEFINITION Task type Custom Formation Evaluation Comment CUSTOM\_FORMATION\_EVALUATION Report tag Template available for geologist to fill Template file Programa\_Evaluacion\_Formacion\_v2.xlsx in formation evaluation requirements **DELIVERABLE** File Programa\_Evaluacion\_Filled.xlsx ••• .doc, .docx, .pdf, .ppt, .pptx, .xls, .xlsx, .png and .jpg can be included directly in the report. For best results use .pdf and .pptx files Report Insertion Insert as Figure (i) Deliverable can be automatically Insert as Document Attachment (i) inserted in drilling program






# **CONNECTED ENGINEERING TOOLS**


 Drilling engineer can now validate the casing design and other workflows



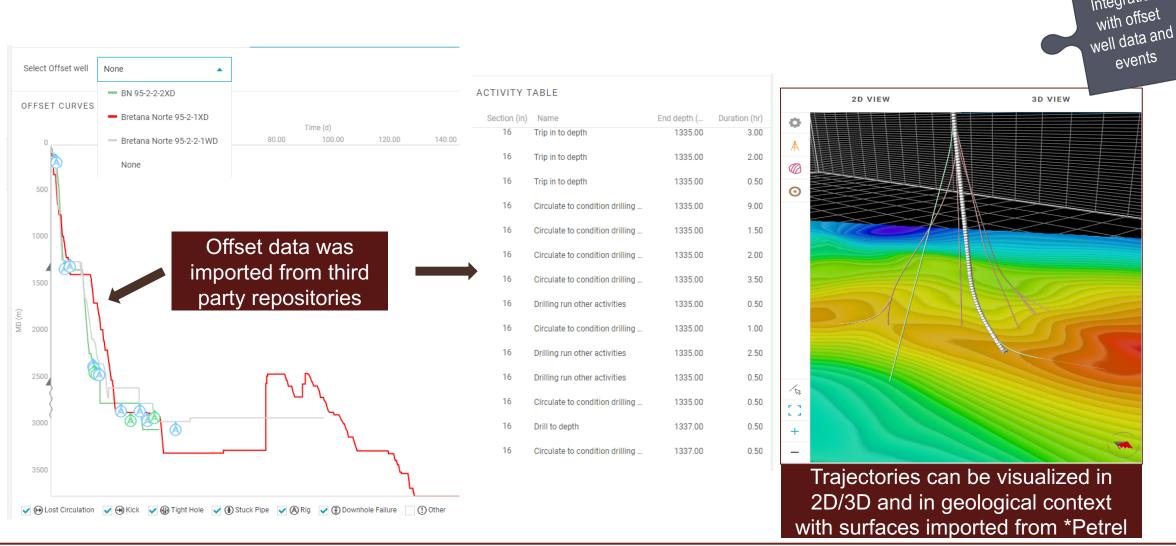
#### Casing Design LOAD CASE SUMMARY RESULTS COLLA... TENS... COMPRESS... BUCKLING 35.37 1081.35 161.73 No Buckling 1.22 1.47 3.57 3.95 1.31 No Buckling 1.20 2.70 2.41 3.45 1.19 No Buckling

# BURST COLLAPSE TENSION COMPRESSION VON MISES 1.100 1.100 1.400 1.250 1.250





### Hydraulics

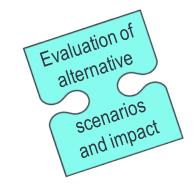

|                                                 | HYDRAU                                            | LICS AN                   | ALYS       | SIS RE                       | POR       | Γ                     |                      |
|-------------------------------------------------|---------------------------------------------------|---------------------------|------------|------------------------------|-----------|-----------------------|----------------------|
| Client: PetroTal Peru S<br>1346.00 - 2570.00 m  | S.R.L. / Field: Bretana N                         | lorte / Well: Bi          | 1 95-2-2   | -4H Piloto /                 | Section   | n: 12.25 in / De      | epth Range:          |
| LUID                                            |                                                   |                           |            |                              |           |                       |                      |
| Mud Type                                        | Density<br>Ibm/gal                                | Yield Point<br>lbf/100ft2 |            | Plastic Vis                  | cosity    | Other                 |                      |
| WaterBased                                      | 9.40 - 11.                                        | 00 25.00                  | - 29.00    | 20.00                        | - 24.00   |                       |                      |
| Depth<br>m                                      | Flowrate gal/min                                  | RPM<br>c/min              |            | Rate of<br>Penetratio<br>m/h | n         | Motor Diff. Pr<br>psi | essure               |
| 1346.00 - 2500.00                               | 1000.00 - 1050.                                   | 00 30.0                   | 0 - 40.00  | 15.0                         | 0 - 20.00 |                       | 200.00               |
| 2500.00 - 2570.00                               | 1000.00 - 1050.                                   | 00 30.0                   | 0 - 40.00  | 15.0                         | 0 - 20.00 |                       | 200.00               |
| WELLBORE GEOM                                   | ETRY                                              |                           |            |                              |           |                       |                      |
| Туре                                            | ID<br>in                                          | Start MD<br>m             | Enc<br>m   | I MD                         |           |                       |                      |
| Cased Hole                                      | 12.415                                            | j 0.0                     | 00         | 1346.00                      |           |                       |                      |
| Open Hole                                       | 12.250                                            | 1346.0                    | 00         | 2570.00                      |           |                       |                      |
|                                                 | IN BHA AT 2570.00<br>of Flowrate, RPM, ROP, Fluid |                           | int and Pl | astic Viscosity              | )         |                       |                      |
| Element                                         |                                                   | Length<br>m               | ID<br>in   | OD<br>in                     |           | Cum Len<br>m          | Pressure Drop<br>psi |
| 12 1/4" PDC Bit (nozzles<br>1.206in2) (nozzles) |                                                   | 0.00                      |            | 3.25                         | 8.00      | 0.00                  | 73                   |
| 12 1/4" PDC Bit (nozzles<br>1.206in2) (shank)   | s: 1x15 +4x16 ; TFA =                             | 0.33                      |            | 3.25                         | 8.00      | 0.33                  |                      |
|                                                 |                                                   |                           |            |                              |           |                       |                      |

### Torque & Drag

| Hole Section / Run  | 12.25 in / Run 1          | Tripping Loads                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MUD WEIG |
|---------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Max HookLoad        | 286.74 klbf @ 2570.00 m   | Tren CH4 20H4 2 Troin CH4 20H4 25 Tep in CH4 20H4 25 Tep in CH4 20H4 35 Troin                                                                                                                                                                                                                                                                                                        | lbm/gal  |
| Max Surface Torque  | 13.04 kft.lbf @ 2565.20 m | 8 80 80 80 80 80 80 80 80 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Von Mises Stress    | 49537.50 psi @ 2570.00 m  | © 900<br>000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| Pipe Yield Strength | 135000.00 psi @ 2570.00 m | 100 mg 10 |          |
| Stress Percentage   | 36.69 % @ 2570.00 m       | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Buckling            | No                        | os 2010 esto 6000 atito 10003<br>Hockloseda (AZP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |



# OFFSET WELL DATA AVAILABLE FOR THE DRILLING ENGINEER






Integration

# INTEGRATION OF GEOMECHANICS, TRAJECTORY AND RISK

- Carried out a geomechanics study for upcoming HZ well
- Shared 1D MEM from Techlog to DrillPlan
  - Data immediately available for other workflows and trajectory risk evaluation







### DRILLPLAN ADDED VALUE

Customized
program
template to be
applied in future
wells

Engineering tools available

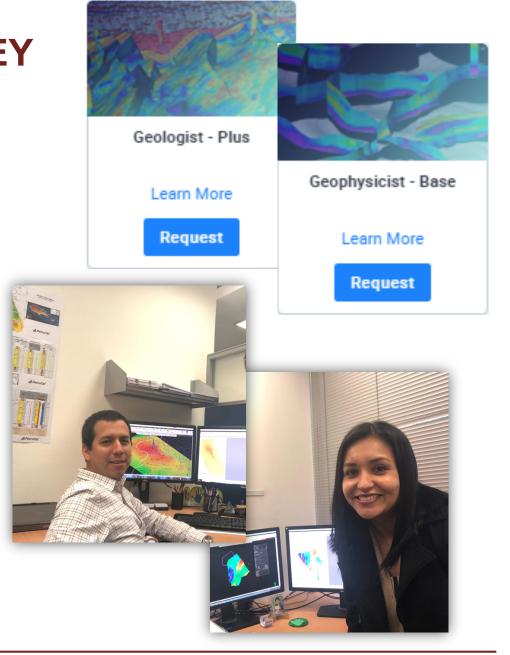
for the drilling engineer

Focal point and place holder for service company programs

Rapid validation of preliminary

designs prior execution

Offset well data integration to support the drilling program


Organizational

Technical



# PETROTAL STARTS A DIGITAL JOURNEY

- First DELFI adopter in Latin America
- Access to Petrotechnical Suite in DELFI through 2 domain profiles
  - Increased business agility
- Currently using cloud-based drilling activity reporting system





### RESULTS AND CONCLUSIONS

- Offset well data was ingested from 2 different data repositories to support planning
- Service company programs were integrated, and engineering validated in DrillPlan for upcoming horizontal well
- Potential time saving for future well designs as ~70% of content and structure can be re-used (copy basis of design)
- DrillPlan allows efficiency in program preparation and management for reduced drilling team



